

CARRERA Ingeniería en Industrias Forestales

PLANIFICACIÓN DE CÁTEDRA					
año: 2015					
1. IDENTIFICACION					
1.1. ASIGNATURA: Fisicoquímica					
1.2. CARÁCTER. OBLIGATORIA 1.3. CICLO: BÁSICO X PROFESIONAL 1.4. CARRERA: Ingeniería en Industrias Forestales 1.5. PLAN DE ESTUDIO: 1996					
1.6. Año Y SEMESTRE: 3° año - 5° modulo					
1.7. RÉGIMENANUAL:					
CUATRIMESTRAL: X PRIMERO: X SEGUNDO:					
1.8. CARGA HORARIA:					
SEMANAL 8 Nº DE SEMANAS 15 TOTAL 120 HS. RELOJ					
1.9. SISTEMA DE APROBACIÓN					
PROMOCIÓN:					
EXAMEN FINAL: X					
1.10. CORRELATIVAS					
CORRELATIVAS ANTERIORES: Química General, Física II y Cálculo diferencial e integral II. CORRELATIVAS POSTERIORES: Servicios Industriales - Operaciones y Procesos Industriales					

Asignatura: **Fisicoquímica** Año Académico: **2015** Profesor: **Lic. HectorTevez**

.....

EQUIPO CÁTEDRA

APELLIDO Y NOMBRES	CARGO Y DEDICACIÓN	RESPONSABLE O
		COLABORADOR
TEVEZ Héctor Rodolfo	Exclusiva	Responsable

3. OBJETIVOS DE LA ASIGNATURA

Comprender y aplicar las leyes de la Termodinámica y relacionarlas a problemas concretos de la Industria Forestal.

Contenidos Mínimos

Propiedades de los gases: ecuación de estado. El gas ideal. Mezcla de gases: presiones parciales. Comportamiento de gases reales: ecuación de estado. Termodinámica química. Primer Principio de la Termodinámica: conceptos de trabajo, calor y conservación de la energía. Trabajo. Calor. Procesos isotérmicos, adiabáticos, reversibles e irreversibles. Termoquímica: calor en las reacciones químicas. Entalpías. Segundo y Tercer principio de la Termodinámica. Entropía. Cambios de entropía en el universo. Funciones de Helmholtz y Gibbs. Combinación de la primera y Segunda ley. Propiedad de la función de Gibbs. Equilibrio de fases de uno y de varios componentes. Estabilidad de las fases. Regla de las fases. Región entre las fases: superficie. Sistema de 1, 2 y 3 componentes. Transformaciones físicas de las mezclas. . Equilibrio químico. Propiedades de las soluciones de electrolitos y no electrolitos. Propiedades coligativas. Electroquímica iónica. Conductividad. Transporte iónico. Electroquímica electródica. Pilas. Potenciales de electrodo. Ecuación de Nerst. Cinética química. Orden de reacción. Teorías. Catalizadores. Propiedades eléctricas y magnéticas de las moléculas. Fuerzas intermoleculares. Macromoléculas. Tamaño y forma. Conformación y configuración. Tensión superficial. Fisicoquímica de superficies. Interfases. Adsorción. Dispersiones coloidales. Actividad catalítica en la superficie.

PROGRAMA ANALÍTICO

Unidad I: Gases.

- 1.1. **Propiedades de los gases:** Ecuación de estado: el gas ideal. Leyes de Boyle y de Gay lussac y Charles. Constantes de los gases. Temperatura absoluta. Mezclas de gases: presiones parciales. Volúmenes parciales. Imperfecciones de los gases ideales.
- 1.2. **Gases reales:** ecuación de estado. Factor de compresibilidad. Ecuación de Van der Waals. Comportamiento cualitativo de los gases. Diagramas P V, punto crítico. Ley de lo estados correspondientes. Diagramas Z = f(P). Otras ecuaciones de estado.
- 1.3. **Isotermas de Andrews:** licuación de gases. Viscosidad de gases y líquidos.

Unidad II: Primer Principio de la termodinámica

- 2.1. **Sistemas Termodinámicos:** tipos de sistemas. Propiedades extensivas e intensivas. Estados de un sistema. Variable de estado.
- 2.2. **Primer principio de la termodinámica:** energía trabajo, calor. Primer principio de la termodinámica, expresión matemática. Capacidad calorífica. Volumen y presión. Reversibilidad y trabajo máximo. Entalpías.

Asignatura: Fisicoquimica	
Año Académico: 2015	
Profesor: Lic. HectorTevez	

- 2.3. **Termodinámica de los gases ideales:** diferencias de las capacidades caloríficas. Procesos de volumen, presión y temperatura constante. Efecto de Joule- Thonson.
- 2.4. **Termoquímica:** leyes de la termoquímica. Calores normales de formación. Calores de combustión. Calor de reacción, calores integrales y diferenciales de disolución. Dependencia de la entalpía de reacción con la temperatura: ecuación de Kirchoff.

Unidad III: Segundo Principio de la Termodinámica:

- 3.1. **Segundo principio de la termodinámica:** la función entrópica. Enunciado del segundo principio. Formulación matemática. Cálculo de la entropía para evoluciones de un sistema compuesto por un gas ideal. Cambios de Entropía en las transformaciones físicas.
- 3.2. Tercer principio de la termodinámica.

Unidad IV: Energía libre - Equilibrio Químico.

- 4.1. **Energía libre:** energía libre de Gibbs. Función trabajo: definición, significado físico. Expresiones de la energía libre en los sistemas abiertos y cerrados. Condición de equilibrio. Energía libre normal. Energía libre de un gas puro ideal. Energía libre de una mezcla de gases ideales.
- 4.2. **Equilibrio Químico:** energía libre de la reacción y la constante de equilibrio químico. Variación de la energía libre y de la constante de equilibrio con la temperatura. Ecuación de Van ´tHoff. Distintas expresiones de a constante de equilibrio. Isotermas de la reacción. Espontaneidad del cambio químico.

Unidad V: Equilibrio de fases - Soluciones.

- 5.1. **Equilibrio de fases de un cuerpo puro:** ecuación de Claussius Clapeyron. Variación de la presión con la temperatura. Regla de las fases. Diagrama de fases: diagramas P-V y P-T. Punto triple, punto crítico.
- 5.2. **Soluciones:** ley de Raoult. Soluciones ideales. Equilibrio de fases en soluciones ideales. Desviación del comportamiento ideal. Diagramas de punto de ebullición de mezcla binaria miscible. Destilación simple y fraccionada. Solubilidad de pares líquidos parcialmente miscibles. Propiedades termodinámicas de las soluciones. Propiedades coligativas de las soluciones: aumento ebulloscópico, descenso relativo de la presión de vapor, presión osmótica. Efecto Donnan. Tonicidad. Determinación de los pesos moleculares.

Unidad VI: Cinética Química:

- 6.1. **Cinética formal:** ecuación general de la velocidad de reacción. Orden. Molecularidad. Reacción de primer y segundo orden.: deducción matemática de las ecuaciones. Tiempo de vida media. Constante de velocidad específica y de sus dimensiones. Reacciones consecutiva y reversible. Principio del estado estacionario.
- 6.2. **Teorías de las velocidades de reacción:** dependencia de la velocidad de una reacción con la temperatura: ecuación de Arrhenius. Energía de activación. Teorías de las colisiones. Teoría de las velocidades absolutas.
- 6.3. Catálisis.

Unidad VII: Electroquímica:

- 7.1. **Interacción ión-ión:** electrolito verdadero y en potencia. Teoría de Debye-Huckel. Coeficiente de actividad: significado físico. Coeficiente de actividad media.
- 7.2. Transporte iónico en solución.
- 7.3. **Pilas Químicas:** reacciones electroquímicas. Pilas Galvánicas y electrolíticas. Fem. Energía Libre y fem. Tipos de electrodos. Convenios termodinámicos. Propiedades normales. Ecuación de Nernst. Dependencia de la fem con la concentración. Aplicaciones de la ecuación de Nernst. Determinación del coeficiente de actividad por medio de la fem.

Unidad VIII: Interfases:

8.1. **Adsorción:** adsorción física y química. Tensión superficial y energía libre superficial. Adsorción de líquido en líquidos. Ecuación de Gibbs. Adsorción en sólidos. Isotermas de adsorción de BET, Lagmuir y Freundlich.

Asignatura: Fisicoquimica	
Año Académico: 2015	
Profesor: Lic. HectorTevez	

- 8.2. **Interfases Electrificadas:** doble capa eléctrica. Curvas electrocapilares. Modelos. Doble capas móviles: fenómenos electrocinéticos. Corriente y potencial de flujo. Electroósmosis. Potencial zeta. Electroforesis. Coloides: estabilidad de los mismos.
- 8.3. Intercambio iónico.

Programa de Trabajos Prácticos de laboratorio:

- 1. Termoquímica: Calor de disolución y de neutralización.
- 2. Cinética: Determinación del orden de reacción.
- **3.** Conductividad: conductividad específica y equivalente...
- **4.** Superficie específica.
- **5.** Isoterma de adsorción.

6. DISTRIBUCIÓN DE LAS CARGAS HORARIAS

Promedio semanal				
	NUMERO	CANTIDAD DE HORAS RELOJ		
TEÓRICAS	2	3		
PRÁCTICAS	1	2		
TEÓRICAS - PRÁCTICAS	2	3		
TOTAL	5	8		

		Carga horaria total		
	Teoría	Resolución de problemas tipo	Total	
Primer cuatrimestre	45	45	30	120

7. CRONOGRAMA

7.1. CRONOGRAMA TENTATIVO DEL DESARROLLO TEMÁTICO.

UNIDADES SEMANAS	I	II	III	IV	V	VI	VII	VIII
1	Х							
2	х	х						
3		х	х					
4			х	х				
5				х				
6					х			
7					х			
8	х	X	х	х		х		
9						х	х	
10							х	
11								х
12								х
13								х
14								
15					х	х	х	х

Asignatura: **Fisicoquímica** Año Académico: **2015** Profesor: **Lic. HectorTevez**

.....

7.2. CRONOGRAMA TENTATIVO DE TRABAJOS PRÁCTICOS de Laboratorio

UNIDADES								
SEMANAS	I	II	III	IV	V	VI	VII	VIII
1								
2								
3		х	х					
4								
5								
6								
7								
8								
9						х		
10							х	
11								
12								
13								х
14								
15								

89. EVALUACIONES

8.1. PARCIALES, PRÁCTICOS, TALLERES Y OTRAS INSTANCIAS DE EVALUACIÓN QUE SE LLEVARÁN A CABO.

11Evaluaciones	Fecha	Tipo de evaluación		
	prevista	Escrita	Oral	
Primera	06-05	X		
Segunda	24-06	X		
Recuperatorios	01-07	X		
Otras instancias de evaluación: seminario				
Otras instancias de evaluación: <u>prácticos de laboratorio</u>				

9. CONDICIONES DE REGULARIDAD O PROMOCIONALIDAD.

CONDICIONES DE REGULARIDAD:

- 1. Asistencia del 80% a clases teórico prácticas.
- 2. Aprobación del 100 % de los trabajos prácticos de laboratorio. Se podrá recuperar hasta un 40 % de los prácticos.

Asignatura: Fisicoquimica	
Año Académico: 2015	
Profesor: Lic. HectorTevez	

- 3. Aprobación de todas las evaluaciones parciales, tanto practica como teórica, con nota mínima de 5 (cinco). El estudiante tendrá derecho a un recuperatorio de cada parcial, en caso de ausencia o desaprobación.
- 4. Presentación de carpeta con los informes de los trabajos de laboratorio al finalizar el ciclo académico.

Examen final de alumnos regulares:

La evaluación será escrita y oral. Será condición previa al examen oral, aprobar la evaluación escrita de problemas con nota mínima de 5 (cinco). Quedarán eximidos del examen escrito, aquellos alumnos que regularicen la asignatura con un promedio mínimo de 7 (siete) puntos en las evaluaciones de práctica (problemas). El examen oral se tomará sin bolillero.

Examen final de alumnos libres:

Parte de problemas: se tomaran ejercicios de todas las unidades y deberá aprobar con nota mínima de 7 (siete).

- ✓ Parte de laboratorio: en forma escrita se tomará una evaluación de cuatro o mas laboratorios. Luego de su aprobación deberá realizar 1 o 2 laboratorios en forma íntegra según quía de laboratorios del año en curso.
- ✓ Parte teórica: El examen oral se tomará sin bolillero.

10. VIAJES DE CAMPAÑA

(Se recuerda que para la efectivización de los viajes, la cátedra debe efectuar los trámites correspondientes al iniciar el año lectivo)

FECHA	CANTIDAD DE DIAS	LOCALIDAD	PROVINCIA	KM A RECORRER

11. OTRAS ACTIVIDADES PREVISTAS (CHARLAS, SEMINARIOS, ETC)

12. BIBLIOGRAFIA

BIBLIOGRAFÍA GENERAL

OBLIGATORIA

- 1. Atkins C. Química física, Ed. Addison Wesley, 3ra.ed., Méjico,1999.
- **2.** Glasstone S., Lewis D. Elementos de Química Física- Ediciones El Ateneo, 5ta reimpresión, Bs.As., Argentina, 1984.
- 3. Levine I. Fisicoquímica, Ed. McGraw-Hill, tomo I, Mejico, 1991.
- 4. Morris, J. g. (1982) "Fisicoquímica para Biologos" Editorial Reverté, s.a. "
- **5.** Moron y Prutton "Fundamentos de fisicoquímica" Limusa.

Asignatura: Fisicoquímica
Año Académico: 2015
Profesor: Lic. HectorTevez

COMPLEMENTARIA

- 1. Barrow G. M. Química física, Editorial Reverté, 3ra ed., Barcelona, España, 1978.
- 2. Castellan G. Fisicoquímica, Ed. Addison Wesley, 2da ed., Méjico, 1987.
- Criado-Sancho M., Casas-Vazquez J. Termodinámica Química de los Procesos Irreversibles, Ed. Addison-Wesley. Madrid, España, 1997
- 4. Palmer W. G. Química Física Experimental. Ed. EUDEBA, Bs As. 1966.

Régimen de Enseñanza y Evaluación

Requisitos para la obtención de la Regularidad:

- ✓ Asistencia al 80 % de las clases TP.
- ✓ Aprobar el 100 % de evaluativos e informes de laboratorios (podrán recuperar hasta un 20 %)
- ✓ Aprobar el 100 % de los parciales prácticos (con nota mínima de 5, podrán recuperar los tres parciales)

EVALUACIÓN

- ✓ Dos exámenes parciales y sus respectivos recuperatorios.
- ✓ Evaluación para ingresar a realizar el laboratorio.

EVALUACIÓN FINAL

Alumnos regulares: la evaluación será escrita y oral y se llevará a cabo en fechas y horarios establecidos por la UNSE. Será condición previa al examen oral, aprobar el trabajo escrito con nota mínima de 5 (cinco). Quedarán eximidos del examen escrito, aquellos alumnos que regularicen la asignatura con un promedio mínimo de 7 (siete) puntos.

El examen oral se tomará sin bolillero.

Los exámenes libres constan de tres instancias:

- Parte de problemas: se tomaran ejercicios de todas las unidades y deberá aprobar con nota mínima de 7 (siete).
- Parte de laboratorio: en forma escrita se tomará una evaluación de cuatro o mas laboratorios. Luego de su aprobación deberá realizar 1 o 2 laboratorios en forma integra según guía de laboratorios del año en curso.
- Parte teórica: El examen oral se tomará sin bolillero.

Asignatura: **Fisicoquímica**Año Académico: **2015**Profesor: **Lic. HectorTevez**

.....