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a  b  s  t  r  a  c  t

While  determining  vegetation  phenology  from  the  time  series  of  historical  satellite  data  has  been  widely
investigated  throughout  the  last  decade,  little  effort  has  been  devoted  to real-time  monitoring  and  short-
term forecasting.  The  latter  is  more  important  for  numerical  weather  modeling,  ecosystem  forecasting,
forest and crop  management,  and  health  risk warning.  In this  study  we developed  a  prototype  approach
for the  real-time  monitoring  and  short-term  forecasting  of  fall foliage  status  (including  low  coloration,
moderate  coloration,  near-peak  coloration,  peak  coloration,  and  post-peak  coloration)  using temporal
satellite  observations.  The  algorithm  combined  the climatology  of  vegetation  phenology  and  temporally
available  satellite  observations  to  establish  a set  of potential  temporal  trajectories  of  foliage  develop-
ment  at  a given  time.  These  trajectories  were  used  to identify  foliage  coloration  phases  in  real  time,  to
predict  the  occurrence  of  future  phenological  events,  and,  furthermore,  to analyze  the uncertainty  of
monitoring  and  forecasting.  With  an  increase  in  satellite  observations,  monitoring  and  forecasting  were
continuously  updated.  The  approach  developed  was  tested  using  MODIS  (Moderate  Resolution  Imaging

Spectroradiometer)  data  at  a spatial  resolution  of  500  m across  northeastern  North  America  and  eval-
uated using  field  measurements  at the  Harvard  Forests  of  the  northeastern  United  States  and  standard
MODIS  foliage  coloration  phases.  The  results  indicate  that  short-term  forecasting  can  be  well  imple-
mented  in  more  than  half  a month  before  the  occurrence  of  a  foliage  phase,  and  that  the  accuracy  of  the
real-time  monitoring  of  both  near-peak-coloration  and  peak-coloration  occurrence  is less than  5 days  in
most mixed  forests  and  deciduous  forests.
. Introduction

Vegetation phenology is an important parameter in regional
nd global modeling, ecological monitoring, and climate change
etection. Shifts in phenology reflect interactions among the ter-
estrial biosphere, the atmosphere, and the hydrosphere, including
utrient dynamics, photosynthesis, water cycling, soil moisture
epletion, transpiration, and canopy physiology (Herwitz, 1985;
yneni et al., 1997; Schwartz, 1998; Asner et al., 2000; Parmesan

nd Yohe, 2003).
As reported in IPCC (2007),  vegetation phenology (including

hifts in the timing of bud burst, leaf development, senescence, and
ength of growing season) is one of the simplest and most effec-
ive indicators of climate change. Long-term phenology records of

oth field measurements and satellite observations have revealed
hat mean spring vegetation leaf greenup has advanced with a
ate of 2–4 days per decade in mid-high latitudes because of the
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E-mail address: Xiaoyang.zhang@noaa.gov (X. Zhang).

168-1923/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
oi:10.1016/j.agrformet.2012.01.013
© 2012 Elsevier B.V. All rights reserved.

increase in temperature associated with anthropogenic greenhouse
effects (Parmesan and Yohe, 2003; Myneni et al., 1997; Zhang et al.,
2007), whereas vegetation greenup onsets have become delayed
in middle-low latitudes (Zhang et al., 2007). The variation in phe-
nology also provides evidence of the large-scale climatic features
associated with El Nino cycles (Myneni et al., 1997; Asner and
Townsend, 2000), precipitation, and drought (Zhang et al., 2005,
2010; Huete et al., 2006).

Near real-time monitoring and short-term forecasting of vege-
tation phenology, on the other hand, have a wide social, cultural,
and economic significance to people on this planet, including
for food supply, human health, species invasions, droughts, and
disease outbreaks (White and Nemani, 2006). They are particularly
important in assisting (1) farmers for predicting the optimum
timing for cultivation practices and for monitoring drought occur-
rences and crop germination (e.g. Hartkamp et al., 2002; Keatinge
et al., 1998; Atkinson and Porter, 1996); (2) foresters for detecting

disturbances related to hurricane destruction, forest pests, disease
outbreaks, and species invasion (Gu et al., 2008; McNulty, 2002;
Chambers et al., 2007); (3) human health managers for providing
short-term forecasts of the critical timing of allergenic pollen

dx.doi.org/10.1016/j.agrformet.2012.01.013
http://www.sciencedirect.com/science/journal/01681923
http://www.elsevier.com/locate/agrformet
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ccurrences and duration (Karlsen et al., 2009); (4) environmental
nd weather modelers for the accurate modeling of seasonal
arbon sequestration and land-surface physical properties; and (5)
ourists for seeing spring wildflowers and fall foliage colors.

During the last decade, various methods were developed to
etect the timing of phenological events of vegetation at regional
nd global scales using AVHRR (Advanced Very High Resolution
adiometer) and MODIS (Moderate Resolution Imaging Spectrora-
iometer) data (e.g. Reed et al., 1994; White et al., 1997; Zhang et al.,
003; Jonsson and Eklundh, 2004). These efforts mainly focused
n the development of historical phenology data using a year-long
ime series of satellite data covering past vegetation growth cycles.
his was due to the fact that the time series of remotely sensed data
re generally noisy because of cloudy and atmospheric contamina-
ions, and that the vegetation index in a given date needs to be
moothed using observations in preceding and succeeding days for
he detection of phenology. The uncertainties in satellite data make
he monitoring of vegetation phenology in real time extremely
hallenging. As a result, very few methods have been developed
or the near real-time monitoring and short-term forecasting of
egetation phenology from satellite data, although phenology fore-
asting has been investigated using a vegetation index threshold
n a specific ecoregion (White and Nemani, 2006) and by integrat-
ng satellite data, microclimate mapping, and ecosystem simulation

odels (Nemani et al., 2009).
This paper proposes a prototype algorithm for monitoring and

orecasting fall foliage coloration phases in individual satellite pix-
ls. The algorithm was first used to calculate the climatology of
egetation phenological development based on historical satel-
ite data. Combining phenologic climatology and available satellite
bservations at the time of monitoring, a set of potential tem-
oral trajectories for a senescent phase were then simulated.
hese potential trajectories were used to identify foliage col-
ration phases in real time, to predict the occurrence of near future
henological events, and to analyze the uncertainty of real-time
onitoring and short-term forecasting. The monitoring and fore-

asting were continuously implemented with an increase in near
eal-time satellite observations during the senescent phase. The
pproach proposed was tested using MODIS data across northeast-
rn North America (MODIS land tile of horizontal 12 and vertical 4,
0◦–50◦N and −65.3◦–93.3◦W).

. Methodology

Fig. 1 describes the flowchart of the algorithm used to mon-
tor and forecast fall foliage coloration status using the satellite
ata. The algorithm basically consists of climatology generation,
otential trajectory simulation, foliage coloration phase detection,
nd uncertainty analysis. The implementation of monitoring from
atellite data is continuously conducted during the period of foliage
evelopment. The prediction before the occurrence of a phenolog-

cal event is here called “short-term forecasting”, while detection
round the phenological occurrence is called “real-time monitor-
ng”. After the occurrence of a coloration status, the coloration
etection is defined as “near real-time monitoring”.

.1. Data sets for algorithm development and testing

Both the satellite data and field measurements were obtained
o develop and evaluate the algorithm for monitoring and forecast-
ng fall foliage coloration phases. First, we collected a time series

f MODIS data from 2001 to 2008 in northeastern North America
MODIS land tile H12V04, 40◦–50◦N and −65.3◦–93.3◦W).  Specif-
cally, the MODIS BRDF (bi-directional reflectance distribution
unction)/albedo product (MCD43A4, collection 5) produces the
t Meteorology 158 (2012) 21– 29

Nadir BRDF Adjusted Reflectance (NBAR) using a semi-empirical,
kernel-driven reflectance anisotropy model and multi-day, cloud-
free, and atmospherically-corrected surface reflectance from
EOS-Aqua and EOS-Terra satellite data (Schaaf et al., 2002). This
product is produced every 8 days (based on the last 16 days of obser-
vations) at a spatial resolution of 500 m.  The corresponding BRDF
Albedo Quality (MCD3A2) product provides a snow and ice flag in
its Quality Assurance (QA) field (Schaaf et al., 2002; Román et al.,
2009). We  calculated a time series of NDVI from 8-day NBAR data
in each pixel. This NBAR NDVI dataset is temporally and spatially
consistent and comparable.

The MODIS land surface temperature (LST) product was  used to
determine the winter period in which the NDVI variation reflects
abiotic influences. The LST product (MOD11A2, collection 5) pro-
duces estimates of the surface skin temperature for an 8-day time
period by averaging the daily LST measurements with a spatial res-
olution of 1 km (Wan  et al., 2002). The time series of LST for each
pixel in this study was generated by replacing any missing values
by using a moving arithmetic average of the nearest preceding and
subsequent values. It was then simply re-sampled to a spatial res-
olution of 500 m by using a nearest neighbour approach in order to
match the MODIS NBAR data. Note that the approaches in spatial
re-sampling and temporal replacement of missing values were sim-
ple and not necessary to provide highly accurate LST data. However,
the resultant LST data allowed us to determine the winter periods
when snow cover could appear and further to distinguish the irreg-
ular NDVI values that could be contaminated by snow cover during
a vegetation dormant stage.

The MODIS land cover product (collection 5), at a spatial reso-
lution of 500 m, was  used to stratify ecosystem types for analyzing
any phenological detections. This product provides 17 land-cover
classes following the International Geosphere-Biosphere Program
(IGBP) scheme (Friedl et al., 2010). Land cover types in the study
region mainly consist of evergreen needleleaf forests, deciduous
broadleaf forests, mixed forests, croplands, and croplands and nat-
ural vegetation mosaic.

Secondly, we collected field measurements of fall foliage
developments in the Harvard Forest from 2001 to 2008 to
verify MODIS monitoring. The Harvard Forest is a long-term
ecological reserve (LTER) site located at 42◦32′N and 72◦11′W
(http://www.lternet.edu/hfr/). This site records leaf development
in 33 woody species representing most species of both overstory
and understory individuals. The fall foliage observations included
the percentage of leaves that changed color on a given tree and the
percentage of leaves that fell at 3- to 7-day intervals during the
autumn.

2.2. Generation of climatology of vegetation phenology

The climatology of the vegetation phenology was  derived from
MODIS data over the past eight years between 2001 and 2008.
Phenological metrics were retrieved from an annual time series
of NBAR NDVI data using an approach developed by Zhang et al.
(2003).  Briefly, the background NDVI in a time series was  deter-
mined by selecting the 75 percentiles of NDVI values that were not
contaminated by snow during a winter period (LST < 278 K). The
background NDVI was used to replace the irregular NDVI values
that were mainly contaminated by snow cover during winter. The
cloud-contaminated data were replaced using a moving-window
average based on two nearest neighbors with valid data. The annual
time series of NDVI data for each individual pixel were then fitted
against the day of year (DOY) using a sigmoidal model of vegetation

growth (Zhang et al., 2003):

y(t) = c

1 + ea+bt
+ d (1)

http://www.lternet.edu/hfr/
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Fig. 1. Flowchart of the monitoring and forecasting of fall foliage coloration from satellite data. The NDVImax represents the maximum NDVI value during a growing season,
NDVIBK is the minimum NDVI without snow and cloud contamination in a given pixel, and LST is land surface temperature.
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here t is time in days, y(t) is the NDVI value at time t, a and b are
arameters characterizing the rate of development of senescence,

 + d is the maximum NDVI value, and d is the initial background
DVI value.

The curvature change rate along the modeled curve was  then
alculated to automatically detect the phenological transition
ates. During a senescent phase, two minimum values of the cur-
ature change rate were corresponding to the timing of senescent
nset and the timing of dormancy onset, separately (Zhang et al.,
003). The maximum NDVI, the NDVI value at dormancy onset,
nd the background NDVI value were calculated from the sigmoidal
odel in this study.
Using the phenological metrics from 2001 to 2008, we  calculated

he climatology of vegetation phenology, which represents the
otential range of senescent variations. The climatological param-

ters were described using the mean value (MV) and standard
eviation (SD) for the metrics separately that were the timing of
enescent onset and dormancy onset, maximum NDVI, NDVI value
t dormancy onset, and background NDVI.
2.3. Simulation of potential senescent trajectories

In the implementation of real/near real-time monitoring and
short-term forecasting, potential NDVI trajectories in a senescent
phase were simulated using the available NDVI data at a given
time. With the accumulation of raw NBAR NDVI data (without
smoothing) during the development of fall foliage, the algorithm
practically started one month before the climatological timing of
senescence onset. By gradually chasing all available 8-day MODIS
NBAR NDVI data in a given phenological cycle, it was assumed that
the peak of a vegetation cycle would be detected. Once there were
two smaller 8-day NDVI values following the occurrence of maxi-
mum  NDVI, which was  at time P1 in Fig. 2, the NDVI observations
following the occurrence of the maximum NDVI were recorded.
These available NDVI observations were not sufficient in order to

establish a temporal trajectory of senescent foliage variation using
the sigmoidal model (Eq. (1)), so we  employed the climatologi-
cal conditions of dormancy characteristics as the potential foliage
development. The climatological characteristics used here were the
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Fig. 2. Simulating potential NDVI trajectories of a senescent phase in near real time
for  a pixel. The circles are the NBAR NDVI data available at the time of simulating the
temporal trajectories. The black bar represents the potential range of NDVI values at
the  climatological timing of dormancy onset. The trajectories were calculated from
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he  available data (before time P4) and the climatological NDVI at the onset of dor-
ancy. Similarly, the potential trajectory varied with the uncertainty of background
DVI and timing of dormancy onset, which is not presented in this figure.

ackground NDVI, and both the NDVI value and timing at dormancy
nset.

A set of potential temporal trajectories were simulated using
he sigmoidal model at the time of each NBAR NDVI observation
y combining the potential NDVI value, the timing at dormancy
nset, and the potential background NDVI value. The potential val-
es that were determined according to climatology were as follows:
he NDVI value increased by 0.002 between MV–SD and MV + SD
nd the timing of dormancy onset increased by one day within the
limatological range. Thus, a set of potential trajectories was  gen-
rated at a given time, such as P4 in Fig. 2. These trajectories were
pdated with the increase of each NBAR NDVI observation in real
ime, and the simulated trajectory gradually approached the actual
emporal pattern.

.4. Determination of fall foliage coloration phases

The coloration phases of fall foliage were continuously moni-
ored and predicted from the potential temporal trajectories with
ncreasing NDVI observations. Specifically, the simulated potential
rajectories were further used to derive the temporally-normalized
rownness index (TNBI). This index describes the relative dynamics
f the fraction of colored foliage and is independent of the surface
ackground, vegetation abundance, and species composition. It is
xpressed in the following formula (Zhang and Goldberg, 2011):

NBIb(t) = 1 − 1
1 + ea+bt

(2)

here TNBIb(t) is the temporally-normalized brownness index at
ime t, and a and b are the parameters characterized by leaf
evelopment in an individual pixel. These two parameters in each
ixel were obtained from the potential senescent trajectory sim-
lated using the sigmoidal model, as described in Section 2.3.  The
emporally-normalized brownness index was assumed to be capa-
le of describing the dynamics of relative fall foliage coloration in
ach individual pixel because the sigmoidal model has been applied
o model seasonal trajectory of vegetation growth across various
cosystems over the globe using webcam data (Richardson et al.,
006; Kovalskyy et al., 2012), Landsat TM data (e.g. Fisher et al.,
006; Kovalskyy et al., 2012), AVHRR data (e.g. Zhang et al., 2007),
nd MODIS data (e.g. Zhang et al., 2003, 2006; Liang et al., 2011).
The temporally-normalized brownness index is a function of
oliage coloration status (Zhang and Goldberg, 2011). According to
he percentage of colored foliage, the brownness index was used
o categorize the fall foliage coloration into five phases that are
t Meteorology 158 (2012) 21– 29

low coloration, moderation coloration, near-peak coloration, peak
coloration, and post-peak coloration. These phases are correspond-
ing to the brownness index of <0.2, 0.2–0.4, 0.4–0.6, 0.6–0.85, and
0.85–1, respectively.

Monitoring and forecasting of foliage coloration phases were
finally obtained from the trajectories of potential brownness index.
At any given time, we generally simulated about 5000 potential
curves of brownness index for a pixel with variations in the cli-
matological parameters. From these curves, we calculated a set
of estimates for foliage coloration status. The mean value of the
estimates was considered to be the prediction and the standard
deviation was  taken as the uncertainty of the prediction.

2.5. Assessment of monitoring and forecasting fall foliage
coloration

The accuracy of monitoring and forecasting was  assessed by
comparing predictions with field measurements and reference
MODIS detections, separately. The field data in the Harvard For-
est were used to match with MDOIS measurements to verify the
MODIS capacity of monitoring foliage coloration statuses. Because
satellite observes foliage dynamics in an entire pixel, we calculated
the average fraction of foliage cover at each observation time. The
numerical average could realistically represent the foliage status
in the vegetation community although it would be more appro-
priate to calculate the foliage phase based on the areal average if
the percent area of each species (overstory and understory) were
known.

The temporal percentage of colored leaves measured in the
Harvard Forest was  further fitted using a sigmoidal model of vege-
tation growth (e.g. Ratkowsky, 1983; Zhang et al., 2003) to quantify
the occurrences of foliage coloration. The model smoothened out
uncertainties in the field measurements and allowed us to con-
tinuously calculate the percentage of the color foliage. According
to the percentage of colored leaves, fall foliage coloration phases
were then defined as the followings (Zhang and Goldberg, 2011):
low coloration (<21% colored leaves), moderate coloration (21–42%
colored leaves), near-peak coloration (42–63% colored leaves),
peak coloration (63–90% colored leaves), and post-peak coloration
(90–100% colored leaves). The occurrences of these field fall foliage
phases were used to compare the monitoring and forecasting of fall
foliage coloration phases derived from MODIS data between 2001
and 2008 using absolute mean difference (AMD).

Across the northeastern North American region (one MODIS
land tile), the standard MODIS detection of foliage coloration phases
was used as a reference to assess the forecasting and monitoring of
fall foliage coloration phases in 2005. The development of standard
MODIS detection foliage coloration phases was presented by Zhang
and Goldberg (2011) and is briefly described here. A year-long time
series of MODIS NDVI in a pixel was smoothed and functionalized
using the sigmoidal model to depict the continuous dynamics of
vegetation growth. The modeled temporal NDVI trajectory during
the senescent phase was further combined with the mixture mod-
eling of surface components to deduce the temporally-normalized
brownness index. This brownness index was quantitatively linked
with the fraction of colored and fallen leaves which were applied
to classify the fall foliage coloration phases.

3. Results

3.1. Monitoring and forecasting of fall foliage coloration in the

Harvard Forest

Fig. 3 presents the temporal development of colored leaves, fit-
ted using a sigmoidal model based on the field measurements. It
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Fig. 5. Average absolute mean errors of foliage coloration monitoring and forecast-
ing  in the Harvard Forests during 2001–2008. The Y-axis defines absolute mean
errors of MODIS detections compared with the field measurements and the X-axis
represents the different time ranges between MODIS detection implementation and
the  occurrence of coloration phase onset measured in field. Negative values repre-
sent the implementation of MODIS detection before event occurrence (forecasting),

Only the spatial pattern in the real-time monitoring is presented
here to illustrate the performance of the algorithm, although mon-
itoring and forecasting were implemented every 8 days with the
ig. 3. Fitted temporal curves of colored foliage measured in the field of the Harvard
orests.

s revealed that the model-fitted curves of colored foliage realisti-
ally represent the field measurements with a regression slope of
.008 ± 0.016, a coefficient of determination (R2) of 0.995 ± 0.0037,
nd an RMSE (root mean square error in percentage leaves) of
.66 ± 1.09 between 2001 and 2008. The curves are very similar
or the years 2003 and 2004 and the years 2002 and 2005, whereas
he curves greatly shift in some of the other years. For example,
he time shift of the curves between 2002 (or 2005) and 2006 is
bout 10 days. Correspondingly, the fall foliage coloration status
learly varied during the period from 2001 to 2008, where the dif-
erence in the timing of peak coloration onset could be as large
s 11 days (Fig. 4). Indeed, these field-measured foliage coloration
hases were good representatives of ground truth for validating the
atellite monitoring and forecasting.

Compared with the field measurements in the Harvard Forests,
he accuracy of monitoring and forecasting foliage coloration using

ODIS NDVI data varied with both the foliage coloration phases
nd the availability of satellite observations. On average, for the

 years (2001–2008), the absolute mean error in monitoring and
orecasting decreased with the increase in MODIS data observa-
ions (Fig. 5). The error was 7 days and 10 days at low and moderate
oloration, respectively, when forecasting was conducted at about
alf a month before the phenological events. It was reduced to 5 and

 days, respectively, when monitoring was implemented around
he time of the event occurrence. In contrast, the coloration occur-
ences of near peak, peak, and post-peak colorations were well
redicted from MODIS data with an error of less than 5 days in
alf a month earlier and with an error of about 2 days in real time.

Generally, the error was large when monitoring low and mod-
rate colorations because of the limited satellite observations that
ere available, whereas it was considerably reduced for the near-
eak coloration and peak coloration. The accuracy increased with
he estimates made at the time approaching the occurrence of a

henological event. When model estimates were made around the
ccurrence of phenological events (real time), the accuracy greatly
mproved (Fig. 5).

ig. 4. Onset of the foliage coloration phases derived from field measurements in
he Harvard Forests.
while positive values indicate monitoring after event occurrence (near real time).
The MODIS detection conducted within 4 days before and after the coloration event
is  termed real-time monitoring.

Uncertainty in the monitoring and forecasting also decreased
with an increase in MODIS NDVI observations in the Harvard For-
est (Fig. 6). The uncertainty was  relatively large when forecasting
low coloration occurrence, whereas it was small when forecasting
near-peak coloration and peak coloration. The average uncertainty
between 2001 and 2008 was  about 3–4 days when forecasting
was conducted about half a month before the corresponding col-
oration event, except for the low coloration occurrence, and it
was 1.7–2.4 days in real-time monitoring (within 4 days of col-
oration event occurrence). The uncertainty was generally less than
2 days in near real-time monitoring (after the occurrence of col-
oration events), except for the post-peak coloration. These patterns
of uncertainty were most likely associated with the fact that clima-
tological parameters play an important role in simulating potential
temporal trajectories in the early stage of a senescent phase. How-
ever, with the increase in satellite observations, the influence of
climatology was  gradually reduced.

3.2. Real-time monitoring of fall foliage coloration over
northeastern North America
Fig. 6. Uncertainty of the monitoring and forecasting of fall foliage coloration in the
Harvard Forests during 2001–2008. The Y-axis represents the uncertainty of MODIS
detections, which is the average standard deviation from 2001 to 2008. The X-axis
represents the different time ranges between MODIS detection implementation and
the  coloration phase onset measured in the field. Negative values represent the
implementation of MODIS detection before event occurrence, while positive values
represent after event occurrence.
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ig. 7. Spatial patterns in the real-time monitoring of peak foliage coloration in nor
hase,  (c) absolute mean differences between real-time monitoring and standard d

ncrease in MODIS NBAR observations over northeastern North
merica region in 2005. Fig. 7 shows the spatial pattern in the
eal-time monitoring of peak foliage coloration across the research

egion, where the land pixels consist of 6.3% evergreen forests,
4.4% deciduous forests, 41.4% mixed forests, 6.6% croplands, and
0.4% cropland and natural vegetation mosaics (Fig. 7a). The peak
oloration occurred in September in northern areas, gradually
ern North America. (a) MODIS land-cover types, (b) onset of peak foliage coloration
on, (d) uncertainty of real-time monitoring.

shifting southwards, and reaching southern areas around 40◦N in
late October (Fig. 7b). Note that foliage coloration was not detected
in some evergreen forests where there were very limited or no

deciduous trees.

Fig. 7c shows the absolute mean difference (AMD) between the
real-time monitoring and the reference MODIS detection of peak
coloration occurrence. The difference was mainly around 5–10 days
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Fig. 8. Pixel (500 m)  frequency of uncertainty in the real-time monitoring of the
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nset of peak foliage coloration in various ecosystems. (a) Absolute mean difference
AMD) between real-time monitoring and standard detection, and (b) uncertainty
f  real-time monitoring.

n the northern region (where mixed forests dominate) whereas
t was generally less than 5 days in the southern regions (mainly
overed by deciduous forests). Specifically, the AMD  was less than

 days in 81% of deciduous pixels and less than 10 days in 84% of
ixed forests, 87% of cropland and natural vegetation mosaics, and

1% of evergreen forests (Fig. 8a).
Fig. 7d illustrates the spatial variation in uncertainty of the real-

ime monitoring of peak coloration occurrence. The uncertainty
as generally less than 2 days and less than 4 days in deciduous and
ixed forests, respectively. In contrast, the uncertainty was slightly

arger in the other ecosystems. The pixel histogram revealed that
he uncertainty of detection was less than 5 days in 97% of the decid-
ous forests, 76% of mixed forests, 85 of crop and natural vegetation
osaics, and 45% of the evergreen forests (Fig. 8b).

The accuracy of real-time monitoring varied in various col-

ration phases. The AMD  in both deciduous forests and mixed
orests varied considerably when monitoring different coloration
hases (Fig. 9a). The AMD  was largest when monitoring low

ig. 9. Pixel (500 m)  frequency of uncertainty in real-time monitoring at various col-
ration phases in deciduous forests and mixed forests. (a) Absolute mean difference
nd (b) uncertainty.
t Meteorology 158 (2012) 21– 29 27

coloration, which was  less than 10 days in 57% of pixels. This was
followed by post-peak coloration, which was less than 5 days and
10 days in 49% and 79% of pixels, respectively. The accuracy of
monitoring was high for the onset of moderate, near-peak, and
peak coloration phases. The AMD  was less than 5 days and 10 days
in more than 60% and 90% of pixels, respectively, in near-peak and
peak coloration phases.

Similarly, the uncertainty was  generally small for monitoring
near peak coloration and peak coloration, which was followed
by moderate coloration, post-peak coloration and low coloration
(Fig. 9b). For uncertainty less than 5 days, the proportions of pix-
els in both deciduous forests and mixed forests were 60.8%, 80.4%,
88.2%, 83.5%, and 75.6% in low coloration, moderation coloration,
near-peak coloration, peak coloration, and post-peak coloration,
respectively. For uncertainty less than 10 days, the relative propor-
tions were 81.3%, 94.1%, 98.6%, 98.1%, and 94.8%.

4. Discussion and conclusions

This paper has demonstrated that the continuous develop-
ment of foliage senescence can be monitored in real time and
forecasted in short term from satellite data in a large spa-
tial coverage. This extends current field observations of fall
foliage, which are available in limited plant species and loca-
tions, such as the USDA-Forest Service Regional Fall Foliage Sites
(http://www.fs.fed.us/news/fallcolors/), forest-ecology networks
(http://www.forestecologynetwork.org/), and citizen-scientist fall
foliage networks (http://www.foliagenetwork.com/). The result
improves our understanding of the temporal and spatial variations
in fall foliage developments across various ecosystems, which is
particularly important in environmental and weather monitoring
and forecasting.

The prototype algorithm proposed was practical for us to
monitor and forecast fall foliage coloration phases across various
ecosystem. It generated potential NDVI trajectories of senescence
development using a pixel-dependent sigmoidal model that is bio-
physically meaningful and has been widely verified based on field
measurements, webcam vegetation indexes, and satellite data (e.g.
Birch et al., 1998; Ratkowsky, 1983; Richards, 1959; Richardson
et al., 2006; Zhang et al., 2003). This approach was  conceptually
different from previous forecasting methods that included models
based on meteorological data (temperature and photoperiod) (e.g.
García-Mozo et al., 2008; Delpierre et al., 2009; Jolly et al., 2005), the
autoregressive distributed-lag function of satellite greenness with
precipitation and temperature (Ji and Peters, 2004), and the empir-
ical distributions of pixels above a NDVI threshold in an ecoregion
(White and Nemani, 2006).

The developed methodology was able to produce both measure-
ments and uncertainties in continuously tracking and forecasting
fall foliage colorations. At a given time, a set of potential temporal
trajectories was established by combining the available satellite
observations with the climatology that provides potential dor-
mancy conditions in the future. The potential trajectories allowed
us to monitor the current phenological status and to predict the
occurrence of future coloration phases. The trajectories varied with
the potential dormancy conditions derived from the climatology
and produced statistical uncertainty of the phenological detections.
Because the contribution of climatological conditions during the
generation of potential trajectories gradually decreased with an
increase in satellite observations, the accuracy of foliage coloration
monitoring improved correspondingly.
Short-term forecasting could be conducted effectively more
than half a month early. The mean absolute error was relatively
large for events at the beginning of the senescent phase because
there were only limited satellite observations available. Thus, the

http://www.fs.fed.us/news/fallcolors/
http://www.forestecologynetwork.org/
http://www.foliagenetwork.com/
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rror of forecasting in low and moderate coloration states could be
s large as 10 days. In contrast, the error was less than 5 days for the
nset of near-peak coloration and peak coloration when compared
ith field measurements in the Harvard Forests.

The real-time monitoring was also more accurate for late col-
ration phases than for early phases. The monitoring of fall foliage
oloration for 8 years in the Harvard Forests showed that the mean
bsolute error was less than 3 days for the onset of near-peak col-
ration, peak coloration and post-peak coloration. However, this
rror could be larger than 5 days for the onset of low coloration and
oderate coloration. Nevertheless, the uncertainty in real-time and

ear real-time monitoring was generally less than 2 days.
Comparisons with standard fall foliage detections also revealed

hat the proposed algorithm was robust for real-time monitoring
cross a large region. The difference was less than 5 days in more
han 62% of mixed and deciduous forests across the northeastern
orth America region. It was less than 10 days in more than 90% of

he MODIS pixels.
The accuracy of the algorithm developed was influenced by sev-

ral factors. Testing was conducted using 8-day MODIS NBAR data
enerated from 16-day observations. The temporal resolution in
his dataset could have affected the accuracy of real-time mon-
toring. Moreover, the accuracy of monitoring could have been
nfluenced by cloud contaminations in the time series of 8-day

ODIS data. For example, 27% of the 1 km global land pixels were
issing at least one 16-day period in 2001 (Zhang et al., 2006).
owever, this algorithm could be a prototype for real-time mon-

toring and short-term forecasting for the Visible Infrared Imager
adiometer Suite (VIIRS) and the next generation of Geostationary
perational Environmental Satellites (GOES-R). In particular, the
OES-R observes the surface every 5 min, which could provide a
igh quality daily vegetation index without cloud contamination.

Finally, it is noted that satellite data monitor the development of
all foliage colorations that represent the vegetation communities
ithin an entire satellite pixel. It is currently impossible to dis-

inguish species-specific fall foliages and to separate tree canopy
oliages from understory vegetation. If a pixel contains plants with
ery different fall foliage statuses, the satellite monitoring repre-
ents the overall foliage coloration phases within the pixel, which
oes not necessarily match well with the coloration in any individ-
al species. However, if a pixel is dominated by species with similar
enescent phases, the satellite-monitored foliage phases could rep-
esent well the species-specific foliage development (Zhang and
oldberg, 2011). In other words, our current monitoring generally
rovides the average coloration phases of plant species in a pixel.
hen reliable species distribution data are available in future, the

all foliage development of specific species could be quantified.
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