

UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO FACULTAD DE CIENCIAS FORESTALES

CURSO DE POSGRADO:

Nanocelulosa y nanotecnología: preparación, análisis y aplicación. Oportunidades en investigación

PROFESOR RESPONSABLE:

DR. IVAN VENSON (UFPR-BR)

26 – 29 DE AGOSTO DE 2019 SANTIAGO DEL ESTERO

Nombre del Curso: Nanocelulosa y nanotecnología: preparación, análisis y aplicación. Oportunidades en investigación.

Profesor Responsable: Dr. Ivan Venson

Duración: 32 horas

Créditos: 3 créditos

Fecha: 26 – 29 de agosto de 2019.

Horario:

1. Marco conceptual e importancia actual

Hay una demanda creciente de materiales más sostenibles que pueden reemplazar los polímeros a base de petróleo en aplicaciones tecnológicas. Más económica y ambientalmente amigables, se están desarrollando procesos y materias primas para cumplir con estas demandas. Por lo tanto, los materiales a base de celulosa, como los compuestos de nanocelulosa, tienen un gran potencial para asumir este papel en un futuro cercano debido a su naturaleza, disponibilidad, biodegradabilidad, y excelente propiedades mecánicas. La celulosa es el polímero renovable más abundante en el tierra y está presente principalmente en plantas y algunas especies de bacterias Está comúnmente presente en la naturaleza en lignocelulósico biomasa, como una forma de celulosa microfibril, envuelta por otros biopolímeros como la lignina y la hemicelulosa. Estas dos componentes actúan como refuerzo mecánico y microbiológico protección en células vegetales.

Como la demanda de combustibles renovables, como el bioetanol, aumenta, se generan más y más residuos biorefinados. La explotación de estos residuos para producir segunda generación, etanol con coproducción de nanocelulosas puede representan un aumento valioso en la rentabilidad de la biorrefinería industria y también proporciona una gran solución para el impacto ambiental de los residuos que se generarían. La nanocelulosa tiene una amplia variedad de aplicaciones, dependiendo en el rango de las propiedades físicas del producto generado. Estas propiedades se ven afectadas principalmente por el proceso de producción utilizado y por la composición de la lignocelulósica biomasa.

2. Objetivo General

Presentar el contexto del desarrollo de la nanotecnología en el ámbito de la investigación.

Objetivos específicos:

Contextualizar los tipos de nanocelulosa a partir de los métodos de obtención;

Presentar los métodos de obtención y preparación;

Presentar los análisis más utilizadas;

Discutir formas de hacer investigación con nanocelulosa en colaboración.

3. Contenidos

- 3.1 Introducción
- 3.2 Celulosa
- 3.3 Nanocelulosa: Celulosa nanofibrilada; nanocristalina; bacteriana y otras.

Estudio de caso: posibles usos

3.4 Obtención del material Nanocelulosa

Fuentes:

- procesos primarios: métodos, análisis y parámetros;
- procesos de purificación: aislamiento, blanqueo, métodos y análisis;
- Nanocelulosa: métodos mecánico, químico y ultrason;
- 3.5 Análisis

MET, MEV, Análisis térmica, reología, otros

Aplicación;

Películas, fármacos y otros.

4. Evaluación.

Revisión de literatura de acuerdo al tema propuesto en el curso, para la elaboración de un artículo colaborativo en la temática Nanocelulosa.

5. Infraestructura necesaria

- Projetor;- Wi-fi.

6. Bibliografía

- 1. Sixta H (2006) Handbook of Pulp. Wiley-VCH Verlag GmbH, Weinheim;
- 2. DENCE, C.W., REEVE, D. Pulp Bleaching Principles and Practice. 1996;
- Celulose e Papel: Tecnologia de Fabricação da Pasta Celulósica. São Paulo, SENAI – IPT;
- 4. SMOOK, G.A., Handbook for pulp and paper technologists.;
- 5. COLODETE Branqueamento de Polpa Celulósica UFV, 2015
- 6. Siqueira G, Bras J, Dufresne A, et al (2010) Cellulosic Bionanocomposites: A Review of Preparation, Properties and Applications. Polymers 2:728–765;
- 7. Mei Chun Li, Qinglin Wu, Kunlin Song, Sun-Young Lee, Qing Yan, and Yiqiang Wu cellulose nanoparticles: structure, morphology- rheology relationship *ACS Sustainable Chem. Eng.*, Publication Date (Web): 30 Mar 2015
- 8. He W, Jiang X, Sun F, Xu X (2014) Extraction and Characterization of Cellulose Nanofibers from Phyllostachys nidularia Munro via a Combination of Acid Treatment and Ultrasonication. BioResources 9:6876–6887:
- 9. Hubbe MA, Rojas OJ, Lucia LA, Sain M (2008) Cellulosic nanocomposites, review. BioResources 3:929–980
- 10.Isogai, Bergström, Preparation of cellulose nanofibers using green and sustainable chemistry. *Cellulose Nanocrystals: Properties, Production, and Applications*. Current Opinion in Green and Sustainable Chemistry 2018, 12:15–21
- 11.Ruan S. A. Ribeiro, Bruno C. Pohlmann, Veronica Calado, Ninoska Bojorge, Nei Pereira J. Production of nanocellulose by enzymatic hydrolysis: Trends and challenges.
- 12. Chen P, Yu H, Liu Y, et al (2013) Concentration effects on the isolation and dynamic rheological behavior of cellulose nanofibers via ultrasonic processing. Cellulose 20:149–157:
- 13. Charreau H, Foresti ML, Vazquez A (2013) Nanocellulose patents trends: a comprehensive review on patents on cellulose nanocrystals, microfibrillated and bacterial cellulose. Recent patents on nanotechnology 7:56–80;
- 14. Amedea B. Seabra, Juliana S. Bernardesb, Wagner J. Fávaroc,d, Amauri J. Paulae, Nelson Durán. Cellulose nanocrystals as carriers in medicine and their

toxicities: A review. Carbohydrate Polymers. Volume 181, 1 February 2018, Pages 514-527

- 15. Sogai, A., Zhou, Y., Diverse nanocelluloses prepared from TEMPO-oxidized wood cellulose fibers: Nanonetworks, nanofibers, and nanocrystals. Current Opinion in Solid State and Materials Science. Volume 23, Issue 2, April 2019, Pages 101-10
- 16.Foster, Moon, Agarwal, Bortner Camarero-Espinosa, Chan, Clift, Cranston, Eichhorn, Fox, Hamad, Heux, Jean, Korey, Nieh, Ong, Reid, Renneckar, Roberts, Shatkin, Simonsen, Stinson-Bagby, Wanasekaraq, Youngbloodl. Current characterization methods for cellulose nanomaterials. Chemical Society Reviews Volume 47 Number 8 21 April 2018 Pages 2511–3006.
- 17. Istva'n Siro' David Plackett. Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose (2010) 17:459–494.
- 18. Theo G. M. van de Ven* and Amir Sheikhi. Hairy cellulose nanocrystalloids: a novel class of nanocellulos. Nanoscale. Volume 8 Number 33 7 September 2016 Pages 15089–15360.

